RESEARCH ARTICLE

Prenatal Stress Exposure, Oxytocin Receptor Gene (OXTR) Methylation and Child Autistic Traits: The Moderating Role of OXTR rs53576 Genotype

Jolien Rijlaarsdam, Matinus H. van IJzendoorn, Frank C. Verhulst, Vincent W. V. Jaddoe,
Janine F. Felix, Henning Tiemeier, and Marian J. Bakermans-Kranenburg

LAY ABSTRACT

The gene encoding the oxytocin receptor (OXTR), localized on chromosome 3p25, is considered a promising candidate for explaining genetic vulnerability to autistic traits. Although several lines of evidence implicate OXTR SNP rs53576 (G/A) variation in social behavior, findings have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. This study investigated the main and interactive effects of OXTR rs53576 genotype, stress exposure, and OXTR methylation on child autistic traits. Prenatal maternal stress exposure, but not OXTR rs53576 genotype and OXTR methylation, showed a main effect on child autistic traits. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction. More specifically, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epigenetic information and support the role of OXTR methylation in child autistic traits.

SCIENTIFIC ABSTRACT

Findings of studies investigating OXTR SNP rs53576 (G-A) variation in social behavior have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. Our goal was to examine OXTR rs53576 allele-specific sensitivity for neonatal OXTR DNA methylation in relation to (1) a prenatal maternal stress composite, and (2) child autistic traits. Prospective data from fetal life to age 6 years were collected in a total of 743 children participating in the Generation R Study. Prenatal maternal stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction in the absence of main effects, suggesting that opposing effects canceled each other out. Indeed, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epigenetic information and support the role of OXTR methylation in child autistic traits.

INTRODUCTION

Autistic traits manifest early in life and indicate impairments in social interaction and communication as well as patterns of restrictive, repetitive interests and behaviors [American Psychiatric Association, 2013]. Given the high heritability estimates for autistic traits [Hallmayer et al., 2011; Lichtenstein, Carlstrom, Rastam, Gillberg, & Anckarsater, 2010], much research has focused on unraveling their genetic underpinnings. Although previous studies have identified multiple genetic variants associated with autistic traits [Freitag, 2007; Geschwind, 2011; Liu et al., 2015; Persico & Napolioni, 2013], effect sizes are small and cannot explain the high heritability estimates derived from twin studies. Here we investigate the main and interactive effects of stress exposure, oxytocin receptor (OXTR) rs53576 genotype, and OXTR methylation on child autistic traits.

The gene encoding the OXTR, localized on chromosome 3p25, is considered a promising candidate for...
explaining genetic vulnerability to autistic traits [Yamasue, 2013]. Although several lines of evidence implicate OXTR SNP rs53576 (G/A) variation in social behavior [e.g., Liu et al., 2010; Park et al., 2010; Wernter et al., 2010; Wu et al., 2005], the results to date have been inconclusive. Whereas some studies indicated that the rs53576 A-allele is a “risk” allele for impaired social functioning in children and adolescents [Liu et al., 2010; Wernter et al., 2010; Wu et al., 2005], others reported that the A-allele is associated with better social cognitive ability [Park et al., 2010]. According to a recent meta-analysis, however, the OXTR rs53576 genotype is unrelated to social behavior or autistic traits [Bakermans-Kranenburg & Van IJzendoorn, 2014]. However, the studies included in this meta-analysis did not examine the influence of epigenetic alterations.

A potential mechanism underlying the risk for autistic traits is the epigenetic process of DNA methylation. DNA methylation is involved in the transcriptional regulation of gene expression that can be influenced by environmental exposures [Szyf, 2011]. Higher levels of prenatal maternal stress exposure (e.g., maternal psychopathology, criminal behaviors, substance use) have been associated with higher methylation levels of the OXTR CpG island in neonates [Cecil et al., 2014]. Elevated methylation of the OXTR CpG island, in turn, has been associated with suppressed gene expression [Kusui et al., 2001] and lower levels of circulating oxytocin [Dadds et al., 2014]. Also of interest, Gregory et al. [2009] reported that elevated methylation of the OXTR CpG island decreased OXTR expression in the temporal cortex in autistic patients versus non-autistic controls. These findings suggest that OXTR methylation is functionally relevant to transcriptional regulation and possibly to the etiology of autistic traits.

It is increasingly recognized that DNA methylation patterns and associations may be allele-specific [Meaburn, Schalkwyk, & Mill, 2010]. For example, Van der Knaap et al. [2015] showed that stressful life events were positively associated with methylation of the serotonin transporter gene (SLC6A4) in the serotonin-transporter-linked polymorphic region (SERTLPR) protective ll variant but not in the s/ll variants. Van IJzendoorn, Caspers, Bakermans-Kranenburg, Beach, and Philibert [2010] reported that methylation of the SLC6A4 gene at SERTLPR was positively associated with risk of unresolved loss or trauma in the SERTLPR ll variant but not in the sl and ss variants. Interestingly, elevated methylation of the ss variant was related to a decreased risk of unresolved loss or trauma. Elevated methylation of gene promoters is generally expected to decrease gene expression, and DNA methylation might (1) nullify the effect of the protective allele, resulting in a functionality equivalent to the risk allele or (2) mask the effect of risk alleles [Van der Knaap et al., 2015; Van IJzendoorn et al., 2010].

Recently, Ziegler et al. [2015] showed that OXTR methylation was predominant in social anxiety patients carrying the OXTR rs53576 A-allele. Similarly, Reiner et al. [2015] reported that, in their sample of clinically depressed women and healthy controls, OXTR rs53576 A-allele carriers exhibited significantly increased OXTR methylation levels. These studies provide suggestive evidence that OXTR methylation is allele-specific and might mask or reveal associations between OXTR rs53576 genotype and phenotype. However, it is not yet known whether carriers of the OXTR rs53576 G- and A-alleles are equally sensitive (1) to methylation after stress exposure and (2) to an increased risk for autistic traits by varying OXTR methylation.

The objective of the current study was to examine OXTR rs53576 allele-specific sensitivity for OXTR methylation in relation to (1) prenatal maternal stress exposure, and (2) child autistic traits at age 6. First, we investigated the extent to which prenatal maternal stress exposure interacted with OXTR rs53576 genotype in the prediction of OXTR methylation variation among neonates. Second, we investigated the extent to which prenatal maternal stress exposure and neonatal OXTR methylation combined either additively or interactively with OXTR rs53576 genotype to influence child autistic traits.

Method

Setting

The current study was conducted in a subsample of children participating in the Generation R Study, a population-based prospective cohort from fetal life onwards in Rotterdam, The Netherlands. The design and sample characteristics of the Generation R Study have been described in detail elsewhere [Jaddoe et al., 2012]. The study is in accordance with the guidelines proposed in the World Medical Association Declaration of Helsinki and has been approved by the Medical Ethics Committee of the Erasmus University Medical Center, Rotterdam. Written informed consent was obtained for all participating children. The subsample, known as the Generation R Focus Study, is ethnically homogeneous to exclude possible confounding or effect modification by ethnicity.

Study Population

DNA was collected from cord blood samples at birth. Information on autistic traits was obtained by two questionnaires when the children were 6 years of age. For 829 children, information on both OXTR DNA methylation and autistic traits was available. We excluded 51...
Table 1. Sample Characteristics (N = 743)

<table>
<thead>
<tr>
<th>AA/AG (n = 428)</th>
<th>GG (n = 315)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prenatal stress exposure, score (log)</td>
<td>0.15 ± 0.10</td>
</tr>
<tr>
<td>OXTR methylation at birth, score</td>
<td>0.20 ± 0.05</td>
</tr>
<tr>
<td>SRS total score at age 6, score (log)</td>
<td>0.07 ± 0.06</td>
</tr>
<tr>
<td>Social communication, score (log)</td>
<td>0.06 ± 0.07</td>
</tr>
<tr>
<td>Social cognition, score (log)</td>
<td>0.10 ± 0.09</td>
</tr>
<tr>
<td>Autistic mannerisms, score (log)</td>
<td>0.04 ± 0.07</td>
</tr>
<tr>
<td>Pervasive developmental problems at age 6, score (log)</td>
<td>0.37 ± 0.28</td>
</tr>
<tr>
<td>Sex (child (% boy))</td>
<td>53.0</td>
</tr>
<tr>
<td>Child nonverbal IQ, score</td>
<td>99.83 ± 15.38</td>
</tr>
<tr>
<td>Maternal smoking during pregnancy (% yes)</td>
<td>11.0</td>
</tr>
<tr>
<td>Maternal postnatal depressive symptoms, score (log)</td>
<td>0.03 ± 0.07</td>
</tr>
</tbody>
</table>

Note. Unless otherwise specified, values represent mean ± SD. No significant group differences were observed.

DNA Methylation Data

Five hundred nanograms of DNA from cord blood (birth) underwent bisulfite conversion using the EZ-96 DNA Methylation Kit (Zymo Research Corporation, Irvine, USA). Illumina Infinium HumanMethylation450 BeadChips (Illumina Inc., San Diego, USA) were run following standardized criteria. Quality control checks for each sample included status of bisulfite conversion, sample call rates, color balance, staining efficiency, extension efficiency, hybridization performance, and stripping efficiency after extension. This study included the 969 neonates who had DNA methylation data that passed quality control. Furthermore, all probes identified as having (1) a single nucleotide polymorphism in the single base extension site with a frequency of >1% in the GoNLx4 reference panel [Francioli et al., 2014] or (2) non-optimal binding (non-mapping or mapping into multiple times to either the normal or the bisulfite-converted genome) were removed from the dataset. Samples were normalized using the Dszen method described by Pidsley et al. [2015] and dye bias corrected [Touleimat & Tost, 2016]. Normalized values are beta-values, which represent the methylation level at a CpG probe for each neonate. The current study was restricted to three probes (cg02192228, cg04523291, cg15317815; located within the OXTR CpG island; hg19; chr3:8809862–8811280), previously identified in the 450k HumanMethylation array, using a similar population and phenotype definition [Cecil et al., 2014]. These probes showed strong positive correlations (range r = 0.64–0.82, all P < 0.001) and their beta-values were averaged to represent an OXTR methylation score. Data inspection revealed three outliers (z-score > 3.29), which were winsorized (i.e., transformed to match the next highest value).

DNA from cord blood was genotyped on Illumina 610 K/660 W platforms. Basic quality checks for each SNP included sample call rates (≥97.5%), SNP call rates (≥98%), minor allele frequency (MAF) ≥0.1% and deviation from the Hardy-Weinberg equilibrium (P < 10^-4). Samples were also checked for excess heterozygosity, gender accuracy, relatedness, and missing data. Following the quality control steps, phased genotype data were imputed to build 37 (hg19) of HapMap reference panel, using the MACH software [Li, Willer, Ding, Scheet, & Abecasis, 2010].

The distribution of rs35376 was 42.4% GG, 47.1% GA, and 10.5% AA. There was no deviation of genotype frequencies from Hardy-Weinberg-Equilibrium (for P = 0.18). Due to the skewed distribution of rs35376, genotype, and in line with previous research [Reiner et al., 2015], we used a dominant model contrasting A allele carriers (AA/AG genotype) versus GG homozygotes.

DNA Methylation Data

Five hundred nanograms of DNA from cord blood (birth) underwent bisulfite conversion using the EZ-96 DNA Methylation Kit (Zymo Research Corporation, Irvine, USA). Illumina Infinium HumanMethylation450 BeadChips (Illumina Inc., San Diego, USA) were run following standardized criteria. Quality control checks for each sample included status of bisulfite conversion, sample call rates, color balance, staining efficiency, extension efficiency, hybridization performance, and stripping efficiency after extension. This study included the 969 neonates who had DNA methylation data that passed quality control. Furthermore, all probes identified as having (1) a single nucleotide polymorphism in the single base extension site with a frequency of >1% in the GoNLx4 reference panel [Francioli et al., 2014] or (2) non-optimal binding (non-mapping or mapping into multiple times to either the normal or the bisulfite-converted genome) were removed from the dataset. Samples were normalized using the Dszen method described by Pidsley et al. [2015] and dye bias corrected [Touleimat & Tost, 2016]. Normalized values are beta-values, which represent the methylation level at a CpG probe for each neonate. The current study was restricted to three probes (cg02192228, cg04523291, cg15317815; located within the OXTR CpG island; hg19; chr3:8809862–8811280), previously identified in the 450k HumanMethylation array, using a similar population and phenotype definition [Cecil et al., 2014]. These probes showed strong positive correlations (range r = 0.64–0.82, all P < 0.001) and their beta-values were averaged to represent an OXTR methylation score. Data inspection revealed three outliers (z-score > 3.29), which were winsorized (i.e., transformed to match the next highest value).

DNA from cord blood was genotyped on Illumina 610 K/660 W platforms. Basic quality checks for each SNP included sample call rates (≥97.5%), SNP call rates (≥98%), minor allele frequency (MAF) ≥0.1% and deviation from the Hardy-Weinberg equilibrium (P < 10^-4). Samples were also checked for excess heterozygosity, gender accuracy, relatedness, and missing data. Following the quality control steps, phased genotype data were imputed to build 37 (hg19) of HapMap reference panel, using the MACH software [Li, Willer, Ding, Scheet, & Abecasis, 2010].

The distribution of rs35376 was 42.4% GG, 47.1% GA, and 10.5% AA. There was no deviation of genotype frequencies from Hardy-Weinberg-Equilibrium (for P = 0.18). Due to the skewed distribution of rs35376, genotype, and in line with previous research [Reiner et al., 2015], we used a dominant model contrasting A allele carriers (AA/AG genotype) versus GG homozygotes.
Child Autistic Traits

Child autistic traits were assessed via parental ratings using an 18-item short form of the Social Responsiveness Scale (SRS; Constantino, 2002; Constantino et al., 2003) when children were 6.0 (SD = 0.29) years of age. Specifically, children’s social responsiveness in the past six months was rated on a 4-point scale, ranging from 0 (never true) to 3 (almost always true). In this study, the SRS total scale was used, as were the three subscales for further analysis. These subscales index social communication, social cognition, and autistic mannerisms. The SRS total scale correlated with the 13-item pervasive developmental problems (PDP) scale of the Child Behavior Checklist (CBCL; Achenbach & Rescorla, 2000) \((r = 0.50, P < 0.001)\), which was included in a sensitivity analysis (mean age = 6.0 years, SD = 0.20). The child outcome scores were logarithmic (Log 10) transformed to approximate a normal distribution.

Covariates

We adjusted for several covariates, including family background characteristics (i.e., child sex, child age, and maternal smoking during pregnancy), technical covariates (i.e., the sample’s array number and position on the array) and cell type proportions. Following the methods developed by Houseman et al. [2012], we included estimated proportions of cells in whole blood [proportion of CD8+ T-cells, CD4+ T-cells, natural killer (NK) cells, B-cells, monocytes and granulocytes] to adjust for cell type composition [Houseman et al., 2012].

Information on child sex was obtained from midwife and hospital registries at birth. Information on maternal tobacco smoking was obtained by postal questionnaires in early, mid- and late pregnancy. Maternal smoking was categorized on the basis of all three questionnaires into “never smoked during pregnancy or quit as soon as pregnancy was known” versus “continued smoking during pregnancy.” Other family background characteristics, such as socio-economic status and prenatal maternal psychopathology, were already accounted for in the prenatal stress exposure score.

In follow-up analyses, we additionally adjusted for child nonverbal IQ and postnatal maternal depression. Child nonverbal IQ was assessed at age 6.0 years (SD = 0.28) using two subtests of the validated Dutch test battery “Snijders-Oomen Niet-verbale Intelligenetest–Revisie” [SON-R 2\(\frac{1}{2}-7\); Tellegen, Winkel, Wijnberg-Williams, and Laros, 2005]; Mosaics (spatial visualization abilities) and Categories (abstract reasoning abilities). Raw test scores were converted into nonverbal IQ scores using norms tailored to exact age. Maternal depression was assessed using the Brief Symptom Inventory [BSI; De Beurs, 2004; Derogatis & Melisaratos, 1983] when children were 3.03 (SD = 0.06) years of age. The BSI is a validated 53-item self-report questionnaire, which is widely used in clinical and research settings. From this questionnaire, the 5-item subscale on depression was used. The depression score was logarithmic (Log 10) transformed to approximate a normal distribution.

Other potential confounders include maternal major depressive disorder (MDD) and medication (e.g., SSRI) use. This concerns rather small numbers \((n_{MDD} = 11; n_{SSRI} = 8)\) in our population-based cohort, and we showed that offspring DNA methylation did not differ for maternal MDD, \(t(669) = 0.53, P = 0.599\), or SSRI use, \(t(666) = 0.30, P = 0.296\). Hence, these variables were not included as covariates.

Statistical Analysis

Linear regression analysis with product terms was performed in SPSS version 23 (IBM Corporation) to test our research questions. First, we examined OXTR rs53576 allele-specific sensitivity for OXTR methylation in relation to prenatal maternal stress exposure. In the first step of the regression equation, we entered prenatal stress exposure, OXTR rs53576 genotype, and covariates. In the second step, we entered the prenatal stress exposure × OXTR rs53576 genotype interaction.

Second, we examined OXTR rs53576 allele-specific sensitivity for OXTR methylation in relation to child autistic traits at age 6. In the first step, we entered OXTR methylation, OXTR rs53576 genotype, and covariates. We also accounted for prenatal stress exposure. In the second step, we entered the OXTR methylation × OXTR rs53576 genotype interaction. We also accounted for interactions of OXTR methylation and OXTR rs53576 genotype with prenatal stress exposure. Next to two-way interactions (step 2: OXTR methylation × prenatal stress exposure; OXTR rs53576 genotype × prenatal stress exposure), we also added a three-way interaction (step 3: OXTR methylation × OXTR rs53576 genotype × prenatal stress exposure). All independent variables were mean-centered prior to analysis.

Furthermore, we tested (1) the extent to which the observed findings were independent of child IQ and postnatal maternal depressive symptoms and (2) sex differences. Missing values on child IQ \((n = 120)\) and postnatal maternal depressive symptoms \((n = 61)\) were handled by use of the Markov Chain Monte Carlo multiple imputation technique with Predictive Mean Matching for continuous variables in SPSS. A total of five datasets were generated and parameter estimates were averaged over the set of analyses. Because we did not impute data of outcome measures, the study
population differs per analysis (N = 680 in all primary analyses; N = 721 in the sensitivity analysis using the CBCL PDP score).

Results

OXTR Methylation

Overall prenatal maternal stress exposure was unrelated to OXTR methylation, $\beta = -0.002$, $P = 0.940$, across both OXTR rs53576 G-allele homozygous children and A-allele carriers, β for interaction $= -0.05$, $P = 0.122$. Similarly, the specific prenatal maternal stress domains (i.e., life stress, contextual stress, personal stress, and interpersonal stress) were unrelated to OXTR methylation. This finding argues against a mediating role of OXTR methylation in the association between prenatal stress exposure and child autistic traits. There was no main effect of OXTR rs53576 genotype on OXTR methylation, $\beta = 0.03$, $P = 0.318$.

Child Autistic Traits

Table 2 shows the final regression model of child autistic traits (SRS social total problem scale and subscales: social communication, social cognition, and autistic mannerisms), Step 1 explained a significant amount of variance in social total problem scores, $R^2 = 0.061$, $P < 0.001$, with a significant main effect of prenatal stress exposure, $\beta = 0.15$, $P < 0.001$, but not of OXTR rs53576 genotype, $P = 0.381$, or OXTR methylation, $P = 0.967$. Steps 2 and 3 produced non-significant increases in R^2 ($\Delta R^2 = 0.008$, $P = 0.134$ and $\Delta R^2 = 0.001$, $P = 0.409$, respectively). With the non-significant prenatal stress exposure × methylation interaction and the prenatal stress exposure × OXTR rs53576 genotype interaction excluded from step 2, however, the increase in R^2 ($\Delta R^2 = 0.006$) was significant, due to the significant OXTR methylation × OXTR rs53576 genotype interaction, $\beta = 0.08$, $P = 0.038$. Thus, the final, most parsimonious model as presented in Table 2 included all main effects (OXTR methylation, OXTR rs53576 genotype, and prenatal stress exposure) and the interaction effect of interest (OXTR methylation × OXTR rs53576 genotype).

As shown in Table 2, this OXTR methylation × OXTR rs53576 genotype interaction was specific to social communication problem scores, $\beta = 0.08$, $P = 0.044$. The association between OXTR methylation and communication problem scores was stronger for G-allele homozygous children ($\beta = 0.14$, $P = 0.068$) than for A-allele carriers ($\beta = -0.03$, $P = 0.639$). Of note, despite these numerical differences between the association of OXTR methylation with communication problem scores for G-allele homozygous children versus A-allele carriers, neither contrast was statistically significant.
observed interaction between OXTR methylation and OXTR rs53576 genotype remained significant after adjustment for child IQ, $\beta = 0.08$, $P = 0.038$, and postnatal maternal depressive symptoms, $\beta = 0.08$, $P = 0.028$, as well as after the inclusion of the sex × OXTR methylation, sex × OXTR rs53576 genotype, and sex × OXTR methylation × OXTR rs53576 genotype interactions (all $P > 0.05$, $\beta = 0.08$, $P = 0.045$). The observed interaction also held when we excluded children with the highest levels of autistic traits, based on cutoffs for screening in a population-based setting [SRS weighted scores ≥ 1.078 in boys ($n = 6$) and >1.00 in girls ($n = 1$)] [Constantino, 2002], $\beta = 0.09$, $P = 0.029$.

Furthermore, a similar OXTR methylation × OXTR rs53576 genotype interaction emerged in the analysis of CBCL PDP, $\beta = 0.11$, $P = 0.004$ ($N = 721$), as well as in the analysis of averaged SRS and CBCL scores, $\beta = 0.12$, $P = 0.003$ ($N = 658$). Increased levels of methylation were statistically significantly associated with more CBCL PDP and higher averaged SRS and CBCL scores in OXTR rs53576 G-allele homozygous children ($\beta = 0.22$, $P = 0.004$ and $\beta = 0.21$, $P = 0.005$, respectively) but not in A-allele carriers ($\beta = -0.08$, $P = 0.200$ and $\beta = -0.09$, $P = 0.138$, respectively). Thus, according to these latter findings, OXTR rs53576 G-allele homozygous children with higher levels of OXTR DNA methylation had higher social problem scores.

As a follow-up analysis, we examined the three CpGs included in the OXTR DNA methylation score separately. The OXTR rs53576 genotype × DNA methylation interaction was statistically significant for cg15317815 ($\beta = 0.10$, $P = 0.010$) but not for cg04523291 ($\beta = 0.06$, $P = 0.131$) and cg02192228 ($\beta = 0.05$, $P = 0.219$).

Discussion

The objective of this prospective population-based study was to examine OXTR rs53576 allele-specific sensitivity for neonatal OXTR methylation in relation to (1) prenatal maternal stress exposure, and (2) child autistic traits at age 6. Our main finding was that OXTR rs53576 genotype and methylation of the OXTR CpG island contributed interactively, but not additively, to child autistic traits in general and social communication problems in particular. Specifically, the association between OXTR methylation and communication problem scores was stronger for G-allele homozygous children than for A-allele carriers. Prenatal maternal stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers.

The current findings extend those of others who have demonstrated that autistic traits may arise from genetic factors [Freitag, 2007; Geschwind, 2011; Liu et al., 2015; Persico & Napolioni, 2013] whose expression may be regulated by DNA methylation. Previous studies suggest, although not unequivocally, that the OXTR rs53576 A-allele is a “risk allele” for autistic traits [Liu et al., 2010; Wermer et al., 2010; Wu et al., 2005]. Elevated methylation of the OXTR CpG island is expected to decrease gene expression [Kusui et al., 2001] and levels of circulating oxytocin [Dadds et al., 2014]. Thus, OXTR methylation may decrease the expression of the otherwise protective OXTR rs53576 GG-allele and elevate the risk for autistic traits. Consequently, one would expect the social communication problems of G-allele homozygous children to resemble more closely those of A-allele carriers. Future research will be needed to establish the functional relevance of the observed findings to gene expression and modulation of oxytocin levels in the brain.

OXTR methylation and OXTR rs53576 genotype were not interrelated but combined interactively to influence child autistic traits. This finding of no allele-specific methylation is discordant with those of Reiner et al. [2015] and Ziegler et al. [2015], suggesting that OXTR rs53576 A-allele carriers exhibit significantly increased OXTR methylation levels. Furthermore, in contrast to the study by Cecil et al. [2014], OXTR methylation did not associate with prenatal stress exposure. Inconsistent findings may be explained, at least in part, by differences in sample composition. Ziegler et al [2015] showed that, when analyzing social anxiety patients and healthy controls separately, rs53576 allele-specific OXTR methylation was driven by the patient group. Furthermore, according to Cecil et al. [2014], the association between prenatal maternal personal stress and OXTR methylation was observed only for early-onset persistent conduct problems youth with low versus high internalizing problems.

Particular strengths of the current study are the prospective population-based design and the inclusion of a wide range of covariates (e.g., childhood and family characteristics, cellular heterogeneity of the blood cells). Including child IQ and maternal postnatal depressive symptoms as covariates, and excluding children with the highest autistic trait scores, did not change the results. Interestingly, the observed OXTR methylation × OXTR rs53576 genotype interaction did not differ between boys and girls and extended to child PDP. Of note, the observed interaction reflected shared variance rather than variance due to solely autistic traits or PDP.

Several limitations should also be considered. First, because DNA methylation was assessed only once (i.e., at birth), stress-induced changes in DNA methylation could not be examined. Longitudinal research is needed to more fully establish the relationships between stress exposure and DNA methylation in the prediction of
child autistic traits. Second, the magnitude of the observed associations was not large, and replication in larger epidemiological samples is warranted. Third, all measures except OXTR DNA methylation and genotype were based on maternal reports, raising the possibility of shared method variance between prenatal maternal stress exposure and child autistic symptoms. Fourth, our European-ancestry sample decreased generalizability. In a recent meta-analysis on oxytocin-related behavior, the combined overall effect size for rs53576 was heterogeneous in the total set of studies, but homogeneous in the studies with mainly European participants [Bakermans-Kränenburg & Van IJzendoorn, 2014]. Thus, although our ethnically homogeneous sample is informative, investigations in other ethnicities are warranted to address the generalizability of our findings. Finally, although some studies have shown that blood samples are adequate proxies of DNA methylation in other tissues such as the brain [Farre et al., 2015; Houtepen et al., 2016], the OXTR gene might be differentially expressed in different tissues. Therefore, it will be important to establish the extent to which our findings reflect associations in the brain. Also, there was no validation of the DNA methylation patterns using different techniques, such as pyrosequencing. The present results should be considered hypothesis-generating and in need of replication.

This candidate gene study focused on the specific hypothesis that OXTR rs53576 genotype and methylation of the OXTR CpG island contributed interactively to child autistic traits at age 6. A focused approach optimizes the statistical power of the methylation by genotype interaction analyses. Given that other OXTR variants [e.g., rs2254298, see Bakermans-Kränenburg & Van IJzendoorn, 2014] have also been suggested to be associated with child social behavior, rs2254298 allele-specific sensitivity for neonatal OXTR DNA methylation in relation to prenatal maternal stress exposure and child autistic traits may be one of the promising avenues for future research. Furthermore, the current study focused on offspring OXTR genotype and DNA methylation at birth, which are all independent of postnatal risk. It will be important to investigate not only maternal stress during pregnancy, but also pre-pregnancy [e.g., a maternal history of childhood abuse, see Heim et al., 2009] and postnatal [e.g., post-traumatic stress, see Eidelman-Rothman et al., 2015] stress exposure, as well as their relative, temporal contributions to offspring OXTR DNA methylation and autistic traits.

In conclusion, the current findings support previous research linking prenatal maternal stress exposure and child autistic traits, but additionally point to molecular genetic differences that may be implicated in gene expression as a factor contributing to autistic traits. We observed a significant OXTR rs53576 genotype x OXTR methylation interaction in the absence of main effects, suggesting that opposing effects on child social problems cancelled each other out. Indeed, OXTR methylation increased the risk for social problems in OXTR rs53576 G-allele homozygous children but not in A-allele carriers. These findings might point to a genetic differential susceptibility model [Bakermans-Kränenburg & Van IJzendoorn, 2015]. The importance of incorporating epi-allelic information had been previously demonstrated in the context of, for example, SLC6A4 methylation, SHHTLPR genotype, stressful life events, and unresolved loss or trauma [Van der Knaap et al., 2015; Van IJzendoorn et al., 2010], but not yet in the context of OXTR methylation, OXTR rs53576 genotype and child autistic traits. The apparent inconsistency in the literature on OXTR rs53576 genotype and social functioning might be explained, at least in part, by varying OXTR methylation.

Acknowledgments

The Generation R Study is conducted by the Erasmus Medical Center in close collaboration with the Erasmus University Rotterdam, School of Law and Faculty of Social Sciences, the Municipal Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterdam, and the Stichting Trombosdienst & Artsenlaboratorium Rijnmond (STAR), Rotterdam. We gratefully acknowledge the contribution of participating children and their parents, general practitioners, hospitals, midwives, and pharmacies in Rotterdam. The general design of the Generation R Study is made possible by the Erasmus Medical Center Rotterdam, the Erasmus University Rotterdam, and The Netherlands Organization for Health Research and Development (ZonMW, grant no. 10.000.1003). The generation and management of EWAS data for the Generation R Study were done at the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, The Netherlands. JR was supported by a research award from The Netherlands Organization for Scientific Research (NWO VICI, grant no. 453-09-003) to MJBK. MJBK and MHvIJ were supported by research awards from the Dutch Ministry of Education, Culture, and Science and The Netherlands Organization for Scientific Research (Gravitation program, SPINOZA, VICI). MJBK was supported by the European Research Council (AdG 669249). HT was supported by a research award from The Netherlands Organization for Scientific Research (NWO ZonMW VIDI, grant no. 017.106.370). MJBK, MHvIJ, and HT are members of the Consortium on Individual Development which is funded through the Gravitation program of the Dutch Ministry of Education, Culture, and Science and The Netherlands Organization for Scientific Research (NWO, grant number 024.001.003). VWVJ
received additional grants from The Netherlands Organization for Health Research and Development (VIDI 016.136.361) and European Research Council (ERC-2014-CoG-64916). JFF has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 633595.

Conflict of Interest

Dr. Frank C. Verhulst is the contributing editor of the Achenbach System of Empirically Based Assessment, from which he receives remuneration. The other authors declare that they have no conflict of interest.

References

AUTHOR QUERY FORM

Dear Author,

During the preparation of your manuscript for publication, the questions listed below have arisen. Please attend to these matters and return this form with your proof.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query</th>
<th>Query References</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>References</td>
<td>Please confirm that the affiliations are OK as typeset.</td>
<td></td>
</tr>
<tr>
<td>AQ2</td>
<td>To Editor</td>
<td>Please check whether the “Scientific Abstract” section is OK as typeset.</td>
<td></td>
</tr>
<tr>
<td>AQ3</td>
<td></td>
<td>Please provide last author name in the author list for the reference Francioli et al. (2014) as per style.</td>
<td></td>
</tr>
<tr>
<td>AQ4</td>
<td></td>
<td>Please confirm that given names (red) and surnames/family names (green) have been identified correctly.</td>
<td></td>
</tr>
</tbody>
</table>

Please confirm that the funding sponsor list below was correctly extracted from your article: that it includes all funders and that the text has been matched to the correct FundRef Registry organization names. If a name was not found in the FundRef registry, it may be not the canonical name form or it may be a program name rather than an organization name or it may be an organization not yet included in FundRef Registry. If you know of another name form or a parent organization name for a not found item on this list below, please share that information.

<table>
<thead>
<tr>
<th>FundRef name</th>
<th>FundRef Organization (Country)</th>
<th>FundRef DOI</th>
<th>Grant IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Netherlands Organization for Health Research and Development</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZonMw</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td>10.000.1003</td>
<td></td>
</tr>
<tr>
<td>The Netherlands Organization for Scientific Research</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWO VICI</td>
<td>Nederlandse Organisatie voor Wetenschappelijk Onderzoek</td>
<td>10.13039/501100003246</td>
<td>453-09-003</td>
</tr>
<tr>
<td>The Netherlands Organization for Scientific Research</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPINOZA</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the European Research Council</td>
<td>European Research Council</td>
<td>10.13039/501100000781</td>
<td>AdG 669249</td>
</tr>
<tr>
<td>Netherlands Organization for Scientific Research</td>
<td>Organization for Autism Research</td>
<td>10.13039/100065098</td>
<td></td>
</tr>
<tr>
<td>NWO ZonMW VIDI</td>
<td>Nederlandse Organisatie voor Wetenschappelijk Onderzoek</td>
<td>10.13039/501100003246</td>
<td>017.106.370</td>
</tr>
<tr>
<td>the Gravitation Program of the Dutch Ministry of</td>
<td>Education, Culture, and Science</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Description</td>
<td>Identifier</td>
<td>ID</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>The Netherlands Organization for Scientific Research</td>
<td>NWO Nederlandse Organisatie voor Wetenschappelijk Onderzoek</td>
<td>10.13039/501100003246 / 024.001.003</td>
<td></td>
</tr>
<tr>
<td>The Netherlands Organization for Health Research and Development</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Research Council</td>
<td>European Research Council</td>
<td>10.13039/501100000781 / ERC-2014-CoG-64916</td>
<td></td>
</tr>
<tr>
<td>European Union’s Horizon 2020 research and innovation programme</td>
<td>[NOT FOUND IN FUNDREF REGISTRY]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>